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THE CRYSTAL STRUCTURE AND ELECTRICAL RESISTIVITY
OF (BPDT—TTF)2I3
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The crystal of (BPDT- TTF) 3 belongs to triclinic system with the
lattice constants of a=16. 350(4), b=9.246(3), c=6.843(2) A, 0=111.11(2), B=
93.21(2), v=91.39(2)°. The structure is isomorphic with the organic
superconductor, 8-(BEDT-TTF)2I3. The resistivity decreases with
increasing the pressure and reaches 0.05 Q cm at 10 kbar, though (BPDT-
TTF) ,I; remains semiconductive up to at least 10 kbar.

Recently Yagubskii et al. have found the superconducitvity of B-(BEDT-TTF)ZI3
at ambient pressure (BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene).l) Unlike the
first organic superconductors (TMTSF)ZX (x=c1o4, PF6~--), whi;? have one-dimension-
al(1-D) bands along the stacking axes of the TMTSF molecules, the examination of
the intermolecular overlap integrals of the highest occupied molecular orbital
(HOMO) of BEDT-TTF has revealed the 2-D character of the conduction band of B-

(BEDT-TTF) The simple tight-binding approximation gave a 2-D closed Fermi-

H2'3

surface.
We have pointed out that the transverse intermolecular interaction is impor-

tant in the BEDT-TTF compounds.4) Although the HOMO has pm character and is con-

sidered to be weakly dependent on the group X, the mode of molecular arrangement

4-6)

is strongly dependent on it. Therefore, the intermolecular interaction may be

controlled to some extent by chanhging X.

{S\C/S S\C/S
c_c/ ; X=C,H, (BEDT-TTF), CjH, (BPDT-TTF), CH, (BMDT-TTF)
s/C\s NgC s/

Crystals of (BPDT-TTF)213 were electrochemically synthesized as black plates
in a 1,1,2-trichloroethane solution of BPDT-TTF (=bis(propylenedithio)tetrathia-
fulvalene) and (n- C )4 The crystal data are: (C12 1258)2 37 triclinic, Pi,
a=16.350(4), b=9. 246(3), c—6 843(2) A, 0=111.11(2), B=93.21(2), y=91.39(2)°,
v=962.3(4) A3, Z=1l. Intensities were measured on a Rigaku automated diffractometer
with Mo Ka radiation. The number of the independent reflections ( 26<60°, IFO|>
30(|F°|)) is 4650. The structure was solved by the heavy atom method. The final
R value was 0.053. The positional parameters are listed in Table 1.
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The crystal structure is shown in Fig. 1.
TTF molecules which are interrelated by the inversion symmetry.
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The unit cell contains two BPDT-
Although the

lattice constants a, b, and ¢ are slightly larger than those of B—(BEDT-TTF)ZI3,
owing to the bulky propylene groups, (BPDT—TTF)213 is almost isomorphous with

B-(BEDT-TTF)213.3’
stacked along [011].
stacking is shown in Fig. 2.
stacking mode of BPDT-TTF has been found
in (BPDT—TTF)3(PF6)2.5) Usually, the
stacking axis is parallel to the direction
of the highest electrical conductivity.
However, the anisotropy of the inter-

The mode of molecular
A similar

molecular overlap integrals of the HOMO

of BEDT-TTF in B-(BEDT-TTF)ZI3 showed that
the intermolecular interactions along the
stacking direction [011l] are not necessarily
larger than those along [010].3) This

is due to the long intermolecular S---S
distance along [011] (3.75 R (A-..B);

4.03 i (A---C) (Fig. 3)).3) Contrary to

8- (BEDT-TTF) ,I,, (BPDT-TTF) ,I, has

short intermolecular contacts along

[011] (Fig. 2).
S-++S contacts are also observed along the
the shortest S---S

In addition, short

transverse direction;
distance is 3.44 A.
Although the intermolecular contacts
along [011l] in (BPDT—TTF)213 are much
closer than those in the zero-pressure
superconductor, B-(BEDT-TTF)ZI3,
(BPDT-TTF)ZI3 is less conductive.
The anisotropy of the electrical
resistivities in the (100) plane was
measured over the temperature range
300-180 K (Fig. 4).
along the c axis ( p(R.T.)//c) is about
0.5 Q cm.
also under high pressure.B)

The resistivity

The measurements were made
The room-
temperature resistivity along [011]

( p//(b+c)) is 0.6 2 cm at ambient

pressure and that along the direction
perpendicular to [011]
3.5 @ cm.

( p_L(b+C) ) is
The anisotropy and the

The BPDT-TTF molecules are

Table 1.

coordinates.

Fractional atomic

The e.s.d.'s are

given in parentheses

x(x10%)  y(x10%Y)  z(x10%
Il 0 0 0
12 1190(4)  7666(1) 5832(1)
S1  53944(10) 2654(2) 5299(3)
82 55790(10) 1566(2) 8808(3)
S3  38183(10) 4568(2)  7388(3)
S4  40334(10) 3488(2) 873(3)
S5 65260(1l1) 496(2)  2665(3)
S6  67875(12) =-753(2) 6898(3)
S7  23257(12) 6278(2) 8943(3)
S8  26052(12) 5014(2)  3035(3)
Cl  50279(36) 2659(7) 7637(10)
C2  43859(37) 3492(7) 8547(10)
C3  61069(36) 1230(7) 5091(10)
C4 61905(36) 735(7) 6718(10)
C5 31062(38) 5109(7) 9284(10)
C6  32060(36) 4600(7) 895 (10)
C7 76380(44) 650(9)  3286(13)
C8  79639(46) -564(9) 4088(14)
C9  78183(44) -253(9) 6372(13)
Cl0 14168(48) 5019(10) 8659 (15)
Cll 11222(50) 4941(12) 679(18)
Cl2 16234(49) 4068(11) 1769 (16)
a J==6£éash=j*~o
B A 4 D
b+c
o “-L’qo cu%;b‘_o

Fig. 1.

Alx,v,2)
B(1-x,-v,1-2)

C(1-x,1-v,2-2)
D(x, 1+v,1+2)

of (BPDT-TTF)ZI3.

Crystal structure
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: A(x,y,2)
"""" B(1l-x,-y,1~-2)
C(1-x,1-y,2-2)
D(x,y,z-1)
E(1-x,1~y,1-2)
F(x,1+y,2)
G(1-x,1-y,-2)
H(x,1+y,z-1)
I(1-x,2~y,1-2)

(b)

(011} % F (0011
(a) H rgl

-~
Fig. 2. Molecular arrangement of BPDT-TTF. % b@\% ‘
(a) Mode of molecular overlapping and transverse %G \IN
S...S contacts; (b) Intermolecular S...S k \@
contacts (<3.8 A) and the shortest C...C w ¢

. (]
distance(3.32 A) along [011]. (c) Molecular o %B

arrangement in the (100) plane.
(c)

activation energy decrease with increasing the pressure (Fig. 5). The resistivity
also decreases with increasing the pressure. The room-temperature value of
p//(b+c) at 10 kbar (109 Pa) is about 0.05 Q@ cm, which is the same order of the
resistivity of B-(BEDT-TTF)ZI3 (0.03 @ cm). These facts suggest the possibility
that (BPDT-TTF)213 becomes a 2-D metal at the pressure much higher than 10 kbar.
In conclusion, despite of the apparent resemblance of the crystal structures
between (BPDT-TTF)ZI3 and B—(BEDT—TTF)ZI3, their conductive properties show a
marked difference. (BPDT-TTF)ZI3 remains
semiconductive up to at least 10 kbar,
indicating that the system with close inter-
melecular contacts along the stacking axis
is not always highly conductive. The
examination of the anisotropy of the
intermolecular interactions will be required

to interpret the conduction properties of
(BPDT-TTF) 213.

~ —
-c Lb"’CA(x,Y,z) B(1-x,1-v, -2)
o €(1-x,2-v,1-2) D(x,v-1,z-1)

Fig. 3. Crystal structure
of B-(BEDT—TTF)2I3.3'7)
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Fig. 4. Electrical N A(b+c)” // (b+c)
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